A Framework of Structural Damage Detection for Civil Structures Using Fast Fourier Transform and Deep Convolutional Neural Networks

نویسندگان

چکیده

In the field of structural health monitoring (SHM), vibration-based damage detection is an important technology to ensure safety civil structures. By taking advantage deep learning, this study introduces a data-driven method that combines convolutional neural networks (DCNN) and fast Fourier transform (FFT). method, vibration data are fed into FFT acquire frequency information reflecting conditions. Then, DCNN utilized automatically extract features from identify To verify effectiveness proposed FFT-DCNN carried out on three-story building structure ASCE benchmark. The experimental result shows achieves high accuracy, compared with classic machine-learning algorithms such as support vector machine (SVM), random forest (RF), K-Nearest Neighbor (KNN), eXtreme Gradient boosting (xgboost).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Very Efficient Training of Convolutional Neural Networks using Fast Fourier Transform and Overlap-and-Add

Convolutional neural networks (CNNs) are currently state-of-the-art for various classification tasks, but are computationally expensive. Propagating through the convolutional layers is very slow, as each kernel in each layer must sequentially calculate many dot products for a single forward and backward propagation which equates to O(N2n2) per kernel per layer where the inputs are N×N arrays an...

متن کامل

Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform

⎯ Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equ...

متن کامل

Deep Convolutional Neural Networks for pedestrian detection

Pedestrian detection is a popular research topic due to its paramount importance for a number of applications, especially in the fields of automotive, surveillance and robotics. Despite the significant improvements, pedestrian detection is still an open challenge that calls for more and more accurate algorithms. In the last few years, deep learning and in particular convolutional neural network...

متن کامل

Damage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks

Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11199345